Tailoring Polymer Dispersity by Controlled Radical Polymerization: A Versatile Approach

12 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Dispersity (Ɖ) can significantly affect polymer properties and is a key parameter in materials design; however, current methods do not allow for the comprehensive control of dispersity. They are limited in monomer scope, may require the use of flow-based systems and/or additional reagents (e.g. termination agents or co-monomers), and are often accompanied by multimodal molecular weight distributions, low initiator efficiencies or poor end-group fidelity. Herein, we report a straightforward and versatile batch method based on reversible addition-fragmentation chain transfer (RAFT) polymerization which enables good control over Ɖ of a wide range of monomer classes, including acrylates, acrylamides, methacrylates and styrene. In addition, our methodology is compatible with more challenging monomers such as methacrylic acid, vinyl ketone and vinyl acetate. Control over Ɖ is achieved by mixing two RAFT agents with sufficiently different transfer activities in various ratios, affording polymers with monomodal molecular weight distributions over a broad dispersity range (Ɖ ~ 1.09-2.10). Our findings were further supported by simulations through the use of deterministic kinetic modelling which was fully in line with our experimental data, further confirming the power of our methodology. The robustness of the concept is further demonstrated by the preparation of well-defined block copolymers via chain extension of all polymers regardless of the initial Ɖ.

Keywords

Dispersity Control
Molecular Weight Distributions
RAFT Polymerization

Supplementary materials

Title
Description
Actions
Title
ESI - tailoring polymer dispersity
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.