Abstract
Covalently bonded organic monolayers play important roles in defining the solution processability, ambient stability, and electronic properties of two-dimensional (2D) materials such as Ge nanosheets (GeNSs); they also hold promise of providing avenues for the fabrication of future generation electronic and optical devices. Functionalization of GeNS normally involves surface moieties linked through covalent Ge−C bonds. In the present contribution we extend the scope of surface linkages to include Si−Ge bonding and present the first demonstration of heteronuclear dehydrocoupling of organosilanes to hydride-terminated GeNSs obtained from the deintercalation and exfoliation of CaGe2. We further exploit this new surface reactivity and demonstrated the preparation of directly bonded silicon quantum dot-Ge nanosheet hybrids.