Evaluation of Grey Wolf Optimization Algorithm on Rigid and Flexible Receptor Docking

31 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Protein-ligand docking programs are indispensable tools for predicting the binding pose of a ligand to the receptor protein in current structure-based drug design. In this paper, we evaluate the performance of grey wolf optimization (GWO) in protein-ligand docking. Two versions of the GWO docking program – the original GWO and the modified one with random walk – were implemented based on AutoDock Vina. Our rigid docking experiments show that the GWO programs have enhanced exploration capability leading to significant speedup in the search while maintaining comparable binding pose prediction accuracy to AutoDock Vina. For flexible receptor docking, the GWO methods are competitive in pose ranking but lower in success rates than AutoDockFR. Successful redocking of all the flexible cases to their holo structures reveals that inaccurate scoring function and lack of proper treatment of backbone are the major causes of docking failures.

Keywords

swarm intelligence
protein-ligand docking
side-chain flexibility
structure-based drug design
AutoDock Vina

Supplementary materials

Title
Description
Actions
Title
manuscript removed-line-numbering
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.