Anomalously High Proton Conduction of Interfacial Water

21 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Water at the solid-liquid interface exhibits an anomalous ionic conductivity and dielectric constant compared to bulk water. Both phenomena still lack a detailed understanding. Here, we report radiofrequency measurements and analyses of the electrodynamic properties of interfacial water confined in nano-porous matrices formed by diamond grains of various sizes, ranging from 5 nm to 0.5 μm in diameter. Contrary to bulk water, the charge-carrying protons/holes in interfacial water are not mutually screened allowing for higher mobility in the external electric field. Thus, the protonic conductivity reaches a maximum value, which can be five orders of magnitude higher than that of bulk water. Our results aid in the understanding of physical and chemical properties of water confined in porous materials, and pave the way to the development of new type of highly-efficient proton-conductive materials for applications in electrochemical energy systems, membrane separations science and nano-fluidics.

Keywords

Proton Conduction
Interfacial water
Water properties in porous media
dielectric spectroscopy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.