Electrochemical C2 Production from CO2 via Self-Assembled Nanoparticles of Cuprous Coordination Polymer

09 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Copper (Cu) metal electrocatalysts activate the CO2 reduction reaction to produce multi electron reductants; however, the instability of the copper active species causes a change in reaction selectivity. Molecular catalysts can be designed as CO2 reduction catalysts with high selectivity, although the production of multi-electron reductants (>2e-) while maintaining the catalyst structure remains difficult. Here we present self-assembled nanoparticles of a cuprous coordination polymer (Cu-SCP) that can catalyze CO2 electrochemical reduction to C2 products, such as ethylene and ethanol, with a total faradaic efficiency of 55%. Cu-SCP maintains its metal complex structure and the Cu (I) oxidation state throughout the reaction. The Cu-SCP catalyst has advantages of being both a molecular and metal catalyst, which should open up new possibilities for CO2 reduction catalysts.

Keywords

CO2 reduction reaction
coordination polymer

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.