Stereoelectronic Effects Impact Glycan Recognition

09 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recognition of distinct glycans is central to biology, and lectins mediate this function. Lectin glycan preferences are usually centered on specific monosaccharides. In contrast, human intelectin-1 (hItln-1, also known as Omentin-1) is a soluble lectin that binds a range of microbial sugars, including β-Dgalactofuranose (β-Galf), D-glycerol 1-phosphate, D-glycero-D-talo-oct-2-ulosonic acid (KO), and 3- deoxy-D-manno-oct-2-ulosonic acid (KDO). Though these saccharides differ dramatically in structure, they share a common feature—an exocyclic vicinal diol. How and whether such a small fragment is sufficient for recognition was unclear. We tested several glycans with this epitope and found that L-glycero-α-Dmanno- heptose and D-glycero-α-D-manno-heptose possess the critical diol motif yet bind weakly. To better understand hItln-1 recognition, we determined the structure of the hItln-1·KO complex using X-ray crystallography, and our 1.59-Å resolution structure enabled unambiguous assignment of the bound KO conformation. This carbohydrate conformation was present in >97% of the KDO/KO structures in the Protein Data Bank. Bioinformatic analysis revealed that KO and KDO adopt a common conformation, while heptoses prefer different conformers. The preferred conformers of KO and KDO favor hItln-1 engagement, but those of the heptoses do not. Natural bond orbital (NBO) calculations suggest these observed conformations, including the side chain orientations, are stabilized by not only steric but also stereoelectronic effects. Thus, our data highlight a role for stereoelectronic effects in dictating the specificity of glycan recognition by proteins. Finally, our finding that hItln-1 avoids binding prevalent glycans with a terminal 1,2 diol (e.g., NeuAc, and L-glycero-α-D-manno-heptose) suggests the lectin has evolved to recognize distinct bacterial species.

Keywords

carbohydrate-binding protein
intelectin
lectin
microbial glycans
bacterial sugar
protein structure
conformational analysis
X-ray crystallography

Supplementary materials

Title
Description
Actions
Title
SuppInfo01 4 19 Final
Description
Actions
Title
McMahonIsabella1 4 20 LLK
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.