Deep Protein-Ligand Binding Prediction Using Unsupervised Learned Representations

08 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In-silico protein-ligand binding prediction is an ongoing area of research in computational chemistry and machine learning based drug discovery, as an accurate predictive model could greatly reduce the time and resources necessary for the detection and prioritization of possible drug candidates. Proteochemometric modeling (PCM) attempts to make an accurate model of the protein-ligand interaction space by combining explicit protein and ligand descriptors. This requires the creation of information-rich, uniform and computer interpretable representations of proteins and ligands. Previous work in PCM modeling relies on pre-defined, handcrafted feature extraction methods, and many methods use protein descriptors that require alignment or are otherwise specific to a particular group of related proteins. However, recent advances in representation learning have shown that unsupervised machine learning can be used to generate embeddings which outperform complex, human-engineered representations. We apply this reasoning to propose a novel proteochemometric modeling methodology which, for the first time, uses embeddings generated via unsupervised representation learning for both the protein and ligand descriptors. We evaluate performance on various splits of a benchmark dataset, including a challenging split that tests the model’s ability to generalize to proteins for which bioactivity data is greatly limited, and we find that our method consistently outperforms state-of-the-art methods.

Keywords

Unsupervised Representation Learning
Computational Biology
Protein-Ligand binding

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.