What Changes on the Inverse Catalyst? Insight From CO Oxidation on Au-Supported Ceria Nanoparticles Using Ab Initio Molecular Dynamics

23 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Oxidation reactions catalyzed by Au nanoparticles supported on reducible oxides have been widely studied both experimentally and theoretically, whereas inverse catalysts, in which oxide nanoparticles are supported on metal surfaces, received considerably less attention. In both systems catalytic activity at metal – oxide interfaces can arise not only from each material contributing its functionality, but also from their interactions creating properties beyond the sum of individual components. Inverse catalysts may retain the synergy between the metal and oxide functionalities, while offering further specific advantages, e.g. a possibility to have better control over interfacial sites or to yield improved stability, activity, and selectivity. Our work provides the mechanism of O atom/vacancy diffusion-assisted Mars-van-Krevelen CO oxidation on gold-supported ceria nanoparticle through state-of-the-art ab initio molecular dynamic simulation studies.

Keywords

Gold (111)
Ceria Nanoparticle
CO Oxidation
Charge transfer
O atom diffusion

Supplementary materials

Title
Description
Actions
Title
AIMD
Description
Actions
Title
Supplementary Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.