Seeding the Self-Assembly of DNA Origamis at Surfaces

19 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Unlike supramolecular self-assembly methods that can organize many unique components into designer shapes in a homogeneous solution (e.g., DNA origami), only relatively simple, symmetric structures consisting of a few unique components have been self-assembled at solid surfaces. As the self-assembly process is confined to the surface/interface by mostly nonspecific attractive interactions, an open question is how these interfacial interactions affect multicomponent self-assembly. To gain a mechanistic understanding of the roles of surface environment in DNA origami self-assembly, here we studied the oligonucleotide-assisted folding of a long single-stranded DNA (ssDNA scaffold) that was end-tethered to a dynamic surface, which could actively regulate the DNA-surface interactions. The results showed that even weak surface attractions can lead to defective structures by inhibiting the merging of multiple domains into complete structures. A combination of surface anchoring and deliberate regulation of DNA-surface interactions allowed us to depart from the existing paradigm of surface confinement via nonspecific interactions and enabled DNA origami folding to proceed in a solution-like environment. Importantly, our new strategy retains the key advantages of surface-mediated self-assembly. Moreover, surface-anchored oligonucleotides could sequence-specifically initiate the growth of DNA origamis of specific sizes and shapes. Our work opens up new opportunities for encoding information into a surface and expressing the information into complex DNA surface architectures for potential nanoelectronics and nanophotonics applications. In addition, our new approach to surface confinement may facilitate the 2D self-assembly of other molecular components, such as proteins, as maintaining conformational freedom may be a general challenge in the self-assembly of complex structures at surfaces.

Keywords

DNA nanotechnology
supramolecular self-assembly
biomolecular surface chemistry
atomic force microscopy

Supplementary materials

Title
Description
Actions
Title
Surface seeded folding SI vf
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.