Abstract
Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on one or two chemical bonds within a polymer. It is underexploited for the scalable synthesis of wholly new materials by activating bonds along the entire polymer, especially products inaccessible by other means. Herein we utilize polymer mechanochemistry to synthesize fluorinated polyacetylene, a long-sought-after air-stable polyacetylene that has eluded synthesis by conventional means. Our synthetic approach proceeds via ultrasonication of a force-responsive precursor polymer that was synthesized in five steps on gram scale. The synthesis is highlighted by rapid incorporation of fluorine in an exotic photochemical cascade whose mechanism and exquisite diastereoselectivity were elucidated by computation.