Accurate Prediction of the S1 Excitation Energy in Solvated Azobenzene Derivatives via Embedded Orbital-Tuned Bethe-Salpeter Calculations

09 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

By employing the Bethe-Salpeter formalism with a non-equilibrium embedding scheme, we demonstrate that the paradigmatic case of S1 band separation between cis and trans in azobenzene derivatives can be computed with excellent accuracy compared to experimental optical spectra. Besides embedding, we show that the choice of the Kohn-Sham exchange correlation functional for DFT is critical, despite the iterative convergence of GW quasiparticle energies. We address this by using a global hybrid functional, PBEh, with the amount of exact exchange fulfilling the Koopman’s theorem for DFT hence yielding an environment-consistent ionization potential.
This method yields the first vertical excitation energy of 20 azo molecules with a mean absolute error as low as 0.06 eV, up to three times smaller compared to standard functionals such as M06-2X and PBE0, and five times smaller compared to recent TDDFT results.

Keywords

Bethe-Salpeter Equation
Embedding
azobenzene derivatives

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.