Modulated Structure Determination and Ion Transport Mechanism of Oxide-Ion Conductor CeNbO4+δ

29 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

CeNbO4+δ, a family of oxygen hyperstoichiometry materials with varying oxygen contents (CeNbO4, CeNbO4.08, CeNbO4.25, CeNbO4.33) and showing mixed electronic and oxide ionic conduction, have been known for four decades. However, the oxide ionic transport mechanism has remained unclear due to the unknown atomic superstructures of CeNbO4.08 and CeNbO4.33. Here, we determinate the complex superstructures of CeNbO4.08 (89 unique atoms), CeNbO4.25 (75 unique atoms) and CeNbO4.33 (19 unique atoms) by using recently developed continuous rotation electron diffraction (cRED) technique from nano single crystals. The Ce cationic size contraction upon oxidation in CeNbO4+δ allows not only excess oxygen incorporation into the CeNbO4 host lattice at the interstitial site within the Ce cation chains (referred to as Oi), but also relaxation of the NbOn polyhedra in CeNbO4.08, CeNbO4.25, CeNbO4.33 being bridged through mixed corner/edge-sharing in 3-dimentional directions. Two kinds of oxide ion migration events are identified in CeNbO4.08 and CeNbO4.25 phases by molecular dynamic simulations, which form long-rang 3-dimensional migration pathway through the interstitial sites Oi via a synergic-cooperation knock-on mechanism involving continuous breaking and reformation of Nb2O9 units. However, the excess oxygen in the CeNbO4.33 phase hardly migrates because of ordered distribution of high-concentration excess oxide ions. The relationship between the structure and oxide ion migration for the whole series of CeNbO4+d compounds elucidated here provides a direction for the performance optimization of these compounds and the development of oxygen hyperstoichiometric materials for wide variety of applications.

Keywords

oxide-ion conductor
Modulated structure determination
ion transport mechanism
CeNbO4+δ

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.