Functional Ionic Porous Frameworks Based on Triaminoguanidinium for CO2 Conversion and Combating Microbes

27 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Porous organic frameworks (POFs) with heteroatom rich ionic backbone have emerged as advanced materials for catalysis, charge-specific molecular separation and antibacterial activity. The loading of metal ions further enhances Lewis acidity augmenting the activity associated with the frameworks. Metal-loaded ionic POFs however often suffer from physicochemical instability, limiting their scope for diverse applications. Herein, we report the fabrication of triaminoguanidinium-based ionic POFs through Schiff base condensation in a cost-effective and scalable manner. The resultant N-rich ionic frameworks facilitate selective CO2 uptake and provide high metal (ZnO, 57.3 ± 1.2%) loading capacity. The hierarchically mesoporous ZnO-rich metalated frameworks (Zn/POFs) show remarkable catalytic activity in the cycloaddition of CO2 and epoxides into cyclic organic carbonates under solvent-free condition with high catalyst recyclability. In addition, both ionic POFs and Zn/POFs exhibit robust antibacterial (Gram-positive, S. aureus and Gram-negative, E. coli) and antiviral activity targeting HIV and VSV-G enveloped lentiviral particles. The enhanced catalytic, as well as broad-spectrum antimicrobial activity, are likely due to the synergistic effect of triaminoguanidinium ions and ZnO infused with the frameworks. We thus establish triaminoguanidinium-based POFs and Zn/POFs as a new class of multifunctional materials for environmental remediation and biomedical applications.

Keywords

CO2 conversion
Ionic porous organic frameworks
triaminoguanidinium chloride
antibacterial
Antiviral

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.