Abstract
Despite recent successes incorporating lignin into photoactive resins, lignin photo-properties can be detrimental to its application in UV-curable photopolymers, especially to customized, engineered resins for use in stereolithography printing. We report on chemical modification techniques employed to reduce UV absorption in lignin and the resulting mechanical, thermal, and cure properties in these lignin-containing materials. Pine lignin was modified using acetylation and reduction reactions and incorporated into a printable resin formulation. Modified lignin displayed enhanced printing properties because UV absorption at the 3D printable range was reduced in all acylated lignin from 25% up to greater than 60%. Resins made with the modified lignin showed increased stiffness and strength with lower thermal stability. Investigating these techniques is an important step in developing lignin for use in UV-curing applications and furthers the effort to valorize lignin toward commercial use.