A New Data-Driven Interacting-Defect Model Describing Nanoscopic Grain Boundary Compositions in Ceramics

20 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A new data-driven interacting-defect model has quantitatively described the nanoscopic com- position of high solute concentrations at grain boundaries in ion-conducting ceramics. The successful model is a data-driven Cahn-Hilliard methodology for interfaces and surfaces, introduced and demonstrated in this report. The model is applied to high spatial resolu- tion composition data gathered at grain boundaries in calcium-doped ceria. The statistical methodology for the data-driven procedure shows definitively that gradient terms are re- quired to quantitatively describe the local grain boundary composition data. The model additionally shows co-accumulation of negatively-charged acceptor dopants and positively- charged oxygen vacancies at the interface, which is qualitatively in accordance with atom probe tomography evidence in acceptor-doped ceria.

Keywords

grain boundary
interfaces
poisson-cahn
phase-field modeling approach

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.