Self-Limiting Electrospray Deposition for the Surface Modification of Additively Manufactured Parts

28 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electrospray deposition (ESD) is a spray coating process that utilizes a high voltage to atomize a flowing solution into charged microdroplets. These self-repulsive droplets evaporate as they travel to a target substrate, depositing the solution solids. Our previous research investigated the conditions necessary to minimize charge dissipation and deposit a thickness-limited film that grows in area over time through self-limiting electrospray deposition (SLED). Such sprays possess the ability to conformally coat complex three-dimensional objects without changing the location of the spray needle or orientation of the object. This makes them ideally suited for the post-processing of materials fabricated through additive manufacturing (AM), opening a paradigm of independent bulk and surface functionality. Having demonstrated three-dimensional coating with film thickness in the range of 1-50 µm on a variety of conductive objects, in this study we employed model substrates to quantitatively study the technique’s limits with regard to geometry and scale. Specifically, we examined the effectiveness of thickness-limited ESD for coating recessed features with gaps ranging from 50 µm to 1 cm, as well as the ability to coat surfaces hidden from the line-of-sight of the spray needle. This was then extended to the coating of hydrogel structures printed by AM, demonstrating that coating could be conducted even into the body of the structures as a means to create hydrophobic surfaces without affecting the absorption-driven humidity response.

Keywords

Electrospray Deposition
Additive Manufacturing
Functional Coatings
Polymers
Self-Assembly

Supplementary materials

Title
Description
Actions
Title
SupportingInformation
Description
Actions
Title
SupplementaryVideo1
Description
Actions
Title
SupplementaryVideo2
Description
Actions
Title
SupplementaryVideo3
Description
Actions
Title
SupplementaryVideo4
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.