Microsecond Timescale Simulations at the Transition State of PmHMGR Predict Remote Allosteric Residues

21 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Understanding the mechanisms of enzymatic catalysis requires a detailed understanding of the complex interplay of structure and dynamics of large systems that is a challenge for both experimental and computational approaches. QM/MM methods have been extensively used to study these reactions, but the difficulties arising from the hybrid treatment of the system are well documented. More importantly, the computational demands of QM/MM simulations mean that the dynamics of the reaction can only be considered on a timescale of nanoseconds even though the conformational changes needed to react the catalytically active state happen on a much slower timescale. Here we demonstrate an alternative approach that uses transition state force fields (TSFFs) derived by the quantum-guided molecular mechanics (Q2MM) method that provides a consistent treatment of the entire system at the classical molecular mechanics level and allows simulations at the microsecond timescale. Application of this approach the second hydride transfer transition state of HMG-CoA reductase from Pseudomonas mevalonii (PmHMGR) identified three remote residues, R396 E399 and L407, (15-27 Å away from the active site) that have a remote dynamic effect on enzyme activity. The predictions were subsequently validated experimentally via site-directed mutagenesis. These results show that microsecond timescale MD simulations of transition states are possible and can predict rather than just rationalize remote allosteric residues.

Keywords

Transition state models
Enzyme mechanism studies
Molecular Dynamics
Enzyme dynamics
Enzyme catalysis

Supplementary materials

Title
Description
Actions
Title
bfact Large
Description
Actions
Title
HMGR bfacts
Description
Actions
Title
ts2-wat
Description
Actions
Title
Q2MM HMGR Supplementary Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.