Synthesis and Initial Pharmacology of Heterobivalent Ligands Targeting Putative Complexes of Integrin αVβ3 and PAR2

26 September 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Unpublished data from our labs led us to hypothesize that activated Protein C (aPC) may initiate an anti-inflammatory signal in endothelial cells by modulating both the integrin αVβ3 and Protease-Activated Receptor 2 (PAR2), which may exist in close proximity on the cellular surface. To test this hypothesis and to probe the possible inflammation-related pathway, we designed and synthesized heterobivalent ligands composed of modified versions of two αVβ3 ligands and two agonists of PAR2. These novel ligands were connected via copper-catalyzed alkyne-azide cycloadditions with polyethylene glycol (PEG) spacers of variable length. Initial in vitro pharmacology with EA.hy926 and HUVEC endothelial cells indicated that these bivalent ligands are effective binders of αVβ3 and potent agonists of PAR2. These bivalent ligands were also used in preliminary studies investigating their effects on PAR2 signaling in the presence of inflammatory agents, and represent the first examples of ligands targeting both PARs and integrins.

Keywords

Protease-Activated Receptor 2
PAR2
integrin
integrin alpha V beta 3
bivalent ligand

Supplementary materials

Title
Description
Actions
Title
2019 09 21 aVB3-PAR2 ag SI CD
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.