Protein Dynamics from Accurate Low-Field Site-Specific Longitudinal and Transverse Relaxation

11 September 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nuclear magnetic relaxation provides invaluable quantitative site-specific information on the dynamics of complex systems. Determining dynamics on nanosecond timescales requires relaxation measurements at low magnetic fields, incompatible with high-resolution NMR. Here, we use a two-field NMR spectrometer to measure carbon-13 transverse and longitudinal relaxation rates at a field as low as 0.33 T (proton Larmor frequency 14 MHz) in specifically labeled sidechains of the protein ubiquitin. The use of radiofrequency pulses enhances the accuracy of measurements as compared to high-resolution relaxometry approaches, where the sample is moved in the stray field of the superconducting magnet. Importantly, we demonstrate that accurate measurements at a single low magnetic field provide enough information to characterize complex motions on low nanosecond timescales, which opens a new window for the determination of site- specific nanosecond motions in complex systems such as proteins.

Keywords

Nuclear Magnetic Resonance (NMR)
NMR relaxation measurements
protein dynamics
high-field NMR spectroscopy
Low-Field NMR Spectroscopy
Two-Field NMR Spectroscopy

Supplementary materials

Title
Description
Actions
Title
2FNMR Relaxation toc
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.