Removal and Recovery of Phosphate and Fluoride from Water with Reusable Mesoporous Fe3O4@mSiO2@mLDH Composites as Sorbents

23 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Three core/shell/shell MgAl-LDH composites using Fe3O4 microspheres as the core, a SiO2 matrix as the inner layer and a MgAl-LDH layer as the outer shell have been synthesized for the removal and recovery of phosphate and fluoride from water by a magnetic separation technique. The synthetic mesoporous MgAl-LDH composites show good magnetic separability, well-defined pore distributions, and have specific surface areas of 73 m2 g−1, 168 m2 g−1, and 137 m2 g−1 for Fe3O4@SiO2@LDH350, Fe3O4@SiO2@mLDH350, and Fe3O4@mSiO2@mLDH350, respectively. The adsorption isotherms of both phosphate and fluoride on these MgAl-LDH composites can be well fitted with the Langmuir model. The maximum adsorption capacities of 57.07 mg g−1 and 28.51 mg g−1 were obtained on Fe3O4@mSiO2@mLDH350 for phosphate and fluoride, respectively, much higher than those of other LDH-type materials. The adsorbed phosphate and fluoride could be successfully recovered by NaNO3-NaOH solution, and the regenerated MgAl-LDH composites could be reused for phosphate and fluoride removal. Owing to their high adsorption capacities of both phosphate and fluoride, easy magnetic separation from solution, and great reusability, the mesoporous MgAl-LDH composites are expected to have potential applications in removal or recovery of fluoride or phosphate from water.

Keywords

Adsorption
mesoporous
phosphate
LDHs
fluoride

Supplementary materials

Title
Description
Actions
Title
P & F Removal and Recovery SI Chemrxiv
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.