Electrochemistry-Enabled Ir-Catalyzed Vinylic C−H Functionalization

11 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Synergistic use of electrochemistry and organometallic catalysis has emerged as a powerful tool for site-selective C–H functionalization, yet this type of transformation has thus far mainly been limited to arene C–H functionalization. Herein, we report the development of electrochemical vinylic C–H functionalization of acrylic acids with alkynes. In this reaction an iridium catalyst enables C–H/O–H functionalization for alkyne annulation, affording a-pyrones with good to excellent yields in an undivided cell. Preliminary mechanistic studies show that anodic oxidation is crucial for releasing the product and regeneration of a Ir(III) intermediate from a diene-Ir(I)complex, which is a coordinatively saturated, 18-electron complex. Importantly, common chemical oxidants such as Ag(I) or Cu(II) did not give significant amounts of the desired product in the absence of electrical current under otherwise identical conditions.

Keywords

Electrochemical synthesis
C-H Functionalization

Supplementary materials

Title
Description
Actions
Title
supporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.