Record High External Quantum Efficiency of 19.2% Achieved in Light-Emitting Diodes of Colloidal Quantum Wells Enabled by Hot-Injection Shell Growth

09 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Colloidal quantum wells (CQWs) are regarded as a new, highly promising class of optoelectronic materials thanks to their unique excitonic characteristics of high extinction coefficient and ultranarrow emission bandwidth. Although the exploration of CQWs in light-emitting diodes (LEDs) is impressive, the performance of CQW-LEDs lags far behind compared with other types of LEDs (e.g., organic LEDs, colloidal quantum-dot LEDs, and perovskite LEDs). Herein, for the first time, the authors show high-efficiency CQW-LEDs reaching close to the theoretical limit. A key factor for this high performance is the exploitation of hot-injection shell (HIS) growth of CQWs, which enables a near-unity photoluminescence quantum yield (PLQY), reduces nonradiative channels, ensures smooth films and enhances the stability. Remarkably, the PLQY remains 95% in solution and 87% in film despite rigorous cleaning. Through systematically understanding their shape-, composition- and device- engineering, the CQW-LEDs using CdSe/Cd0.25Zn0.75S core/HIS CQWs exhibit a maximum external quantum efficiency of 19.2%. Additionally, a high luminance of 23,490 cd m-2, extremely saturated red color with the Commission Internationale de L’Eclairage coordinates of (0.715, 0.283) and stable emission are obtained. The findings indicate that HIS grown CQWs enable high-performance solution-processed LEDs, which may pave the path for CQW-based display and lighting technologies.

Keywords

light-emitting diode
hot injection
quantum well
core/shell
nanoplatelet

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.