Functionalized and Degradable Polyphthalaldehyde Derivatives

22 August 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Polymers that depolymerize back to monomers can be repeatedly chemically recycled, thereby reducing their environmental impact. Polyphthalaldehyde is a metastable polymer that is rapidly and quantitatively depolymerized due to its low ceiling temperature. However, the effect of substitution on the physical and chemical properties of polyphthalaldehyde derivatives has not been systematically studied. Herein, we investigate the cationic polymerization of seven distinct o‑phthalaldehyde derivatives and demonstrate that judicious choice of substituents results in materials with a wide range of ceiling temperatures (from < –60 to 106 °C) and decomposition temperatures (109–196 °C). We anticipate that these new polymers and their derivatives will enable researchers to access degradable materials with tunable thermal, physical, and chemical properties.

Keywords

degradable polymer system
depolymerization reaction
polymer synthesis
ceiling temperature
poly(phthalaldehyde)

Supplementary materials

Title
Description
Actions
Title
PPA FINAL SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.