The Mechanism of Rhodium Catalyzed Allylic C–H Amination

04 September 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The mechanism of catalytic allylic C–H amination reactions promoted by Cp*Rh complexes is reported. Reaction kinetics experiments, stoichiometric studies, and DFT calculations demonstrate that allylic C–H activation to generate a Cp*Rh(π-allyl) complex is viable under mild reaction conditions. The role of external oxidant in the catalytic cycle is elucidated. Quantum mechanical calculations, stoichiometric reactions, and cyclic voltammetryexperiments support an oxidatively induced reductive elimination process of the allyl fragment with an acetate ligand. Lastly, evidences supporting the amination of an allylic acetate intermediate is presented. Both nucleophilic substitution catalyzed by Ag+that behaves as a Lewis acid catalyst and an inner-sphere amination catalyzed by Cp*Rh are shown to be viable for the last step of the allylic amination reaction.

Keywords

C–H amination
C-H functionalization
Density functional theory
Rhodium
Mechanism

Supplementary materials

Title
Description
Actions
Title
Blakey-Baik-Rh-AllylicCHAmination-Mechanism
Description
Actions
Title
Compiled Allylic Amination Mechanism SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.