Abstract
The interatomic Chebyshev Interaction Model for Efficient Simulation (ChIMES) is based on linear combinations of Chebyshev polynomials describing explicit two- and three-body interactions. Recently, the ChIMES model has been developed and applied to a molten metallic system of a single atom type (carbon), as well as a non-reactive molecular system of two atom types at ambient conditions (water). Here, we continue application of ChIMES to increasingly complex problems through extension to a reactive system. Specifically, we develop a ChIMES model for carbon monoxide under extreme conditions, with built-in transferability to nearby state points. We demonstrate that the resulting model recovers much of the accuracy of DFT while exhibiting a 104increase in efficiency, linear system size scalability and the ability to overcome the significant system size effects exhibited by DFT.