Quantum Chemical Modeling of Pressure-Induced Spin Crossover in Octahedral Metal-Ligand Complexes

29 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Spin state switching on external stimuli is a phenomenon with wide applicability ranging from molecular electronics to gas activation in nanoporous frameworks. Here we model spin crossover as a function of hydrostatic pressure in octahedrally coordinated transition metal centers by applying a field of effective nuclear forces that compress the molecule towards its centroid. For spin crossover in first-row transition metals coordinated by hydrogen, nitrogen, and carbon monoxide, we find the pressure required for spin transition to be a function of ligand position in the spectrochemical sequence. While pressures on the order of 1 GPa are required to flip spins in homogeneously ligated octahedral sites, we demonstrate a five-fold decrease in spin transition pressure for the archetypal strong field ligand carbon monoxide in octahedrally coordinated Fe2+ in [Fe(II)(NH3)5CO]2+.

Keywords

Spin crossover
Pressure
Density Functional Theory

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.