Synthesis of Microporous Silica Nanoparticles to Study Water Phase Transitions by Vibrational Spectroscopy

27 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Microporous silica nanoparticles have been developed by a reverse microemulsion method utilizing zinc nanoclusters encapsulated hydroxyl-terminated polyamidoamine (PAMAM-OH) dendrimers as a soft template and made tunable within the outer diameter range of 20-50 nm with a core mesopore of 2-15 nm. Synthesized nanoparticles were used to study the effects of surface area and microporous volumes on the vibrational spectroscopy of water. These spectra reveal contributions from bulk interfacial/interparticle water, ice-like surface water, liquid-like water, and hydrated silica surfaces suggesting that microporous silica nanoparticles allow a way to probe silica water interactions at the molecular scale.

Keywords

Interfacial water
IR Spectroscopic Methods
metal encapsulated dendrimer
reverse microemulsion
silica nanoparticles

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.