Abstract
The ability of bismuth to maneuver between different oxidation states in a catalytic redox cycle, mimicking the canonical organometallic steps associated to a transition metal, is an elusive and unprecedented approach in the field of homogeneous catalysis. Herein we present a catalytic protocol based on bismuth, a benign and sustainable main-group element, capable of performing every organometallic step in the context of oxidative fluorination of boron compounds; a territory reserved to transition metals. A rational ligand design featuring hypervalent coordination together with a mechanistic understanding of the fundamental steps, permitted a catalytic fluorination protocol based on a Bi(III)/Bi(V) redox couple, which represents a unique example where a main-group element is capable of outperforming its transition metal counterparts.
A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.
A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.
Supplementary materials
Title
Bi Redox Supplementary Information
Description
Actions