Accelerating AutoDock4 with GPUs and Gradient-Based Local Search

23 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

AutoDock4 is a widely used program for docking small molecules to macromolecular targets. It describes ligand- receptor interactions using a physics-inspired scoring function that has been proven useful in a variety of drug discovery projects. However, compared to more modern and recent software, AutoDock4 has longer execution times, limiting its applicability to large scale dockings. To address this problem, we describe an OpenCL implementation of AutoDock4, called AutoDock-GPU, that leverages the highly parallel architecture of GPU hardware to improve the docking throughput up to 170-fold. Moreover, we introduce the gradient-based local search method ADADELTA, which is more efficient than the original Solis-Wets method, especially for conformationally complex ligands. We estimate a 1300x reduction in the number of scoring function calls for ligands with 20 rotatable bonds, and even higher reductions likely for more complex ligands. The improvements reported here, both in terms of docking throughput and search efficiency, expand the domain of applicability of the AutoDock4 scoring function considerably.

Keywords

Molecular Docking
AutoDock
High Performance Computing
GPU
OpenCL

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.