Abstract
Efficient quantum-chemical methods that are able to describe intermolecular charge are crucial for modeling organic semiconductors. However, the correct description of intermolecular charge transfer with density-functional theory (DFT) is hampered by the fractional charge error of approximate exchange-correlation (xc) functionals. Here, we investigate the charge transfer induced by an external electric field in a tetrathiafulvalene--tetracyanoquinodimethane (TTF--TCNQ) complex as a test case. For this seemingly simple model system, a supermolecular DFT treatment fails with most conventional xc functionals. Here, we present an extension of subsystem DFT to subsystems with a fractional number of electrons. We show that within such a framework it becomes possible to overcome the fractional charge error by enforcing the correct dependence of each subsystem's total energy on the subsystem's fractional charge. Such a subsystem DFT approach allows for a correct description of the intermolecular charge transfer in the TTF--TCNQ model complex. The approach presented here can be generalized to larger molecular aggregates and will thus allow for modeling organic semiconductor materials accurately and efficiently.
Supplementary materials
Title
TTF-TCNQ-Structures
Description
Actions