Acid Exfoliation of Imine-linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films

21 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Covalent organic frameworks (COFs) are highly modular, porous, crystalline polymers of interest for charge storage devices, nanofiltration membranes, optoelectronic devices, and more. COFs are typically synthesized as microcrystalline powders, a morphology that limits their performance in these applications, and their limited solubility precludes large-scale processing into more useful morphologies and devices. Here, we report a general, scalable method to exfoliate two-dimensional imine-linked COF powders by temporarily protonating their linkages. The resulting suspensions were cast into continuous, crystalline COF films up to 10 cm in diameter. This strategy was successfully applied to three different COF structures, and excellent film thickness control (50 nm to 20 µm) was achieved by modifying the suspension composition, concentration, and casting protocol. Acid-mediated exfoliation is a promising strategy for solution processing readily accessible imine-linked COF powders into functional devices.

Keywords

covalent organic frameworks
COFs
exfoliation
layered materials
thin films
porous polymers
membranes

Supplementary materials

Title
Description
Actions
Title
2019 08 ChemRxiv Burke COFexfoliation SI
Description
Actions
Title
2019 08 ChemRxiv Burke COFexfoliation TOC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.