Abstract
There are relatively few methods that accom- plish the selective alkoxylation of sp3-hybridized C–H bonds, particularly in comparison to the numerous analogous strate- gies for C–N and C–C bond formation. We report a photo- catalytic protocol for the functionalization of benzylic C–H bonds with a wide range of readily available oxygen nucleo- philes. Our strategy merges the photoredox activation of arenes with copper(II)-mediated oxidation of the resulting benzylic radicals, which enables the introduction of benzylic C–O bonds with high site selectivity, chemoselectivity, and functional group tolerance. This method enables the late- stage introduction of complex alkoxy groups into bioactive molecules, providing a practical new tool with potential appli- cations in synthesis and medicinal chemistry.