Solving the Non-Relativistic Electronic Schrödinger Equation with Manipulating the Coupling Strength Parameter over the Electron-Electron Coulomb Integrals

19 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The non-relativistic electronic Hamiltonian, H(a)= Hkin+Hne+aHee, extended with coupling strength parameter (a), allows to switch the electron-electron repulsion energy off and on. First, the easier a=0 case is solved and the solution of real (physical) a=1 case is generated thereafter from it to calculate the total electronic energy (Etotal electr,K) mainly for ground state (K=0). This strategy is worked out with utilizing generalized Moller-Plesset (MP), square of Hamiltonian (H2) and Configuration interactions (CI) devices. Applying standard eigensolver for Hamiltonian matrices (one or two times) buys off the needs of self-consistent field (SCF) convergence in this algorithm, along with providing the correction for basis set error and correlation effect. (SCF convergence is typically performed in the standard HF-SCF/basis/a=1 routine in today practice.)

Keywords

Totally non-interacting reference system (TNRS)
Generalization of Moller-Plesset algorithm w/r to coupling strength parameter
Utilizing square of Hamiltonian operator for ground state
Configuration interactions from TRNS
Avoiding SCF convergence

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.