Quasi-Linear Buildup of Coulomb Integrals via the Coupling Strength Parameter in the Non-Relativistic Electronic Schrödinger Equation

19 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The non-relativistic electronic Hamiltonian, Hkin+Hne+aHee, is linear in coupling strength parameter (a), but its eigenvalues (electronic energies) have only quasi-linear dependence on it. Detailed analysis is given on the participation of electron-electron repulsion energy (Vee) in total electronic energy (Etotal electr,k) in addition to the wellknown virial theorem and standard algorithm for vee(a=1)=Vee calculated during the standard- and post HF-SCF routines. Using a particular modification in the SCF part of the Gaussian package, we have analyzed the ground state solutions via the parameter “a”. Technically, with a single line in the SCF algorithm, operator was changed as 1/rij-> a/rij with input “a”. The most important findings are, 1, vee(a) is quasi-linear function of “a”, 2, the extension of 1st Hohenberg-Kohn theorem (PSI0(a=1) <=> Hne <=> Y0(a=0)) and its consequences in relation to “a”. The latter allows an algebraic transfer from the simpler solution of case a=0 (where the single Slater determinant Y0 is the accurate form) to the physical case a=1. Moreover, we have generalized the emblematic Hund’s rule, virial-, Hohenberg-Kohn- and Koopmans theorems in relation to the coupling strength parameter.

Keywords

Electron-electron repulsion energy participation in ground states
Totally non-interacting reference system (TNRS)
Evolution of LCAO parameters in HF-SCF algorithm
Generalization of Hund’s rule, virial-, Hohenberg-Kohn- and Koopmans theorems

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.