Rh Methylidenes from Redox Cascade Activation of Chloroalkanes

14 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Oxidative addition of carbon-halogen bonds at transition metals typically follow either a two-electron pathway (concerted M-R/M-X formation) or a radical chain pathway (stepwise M-R/M-X formation). When the reactive metal species is generated slowly, however, both mechanisms can compete to yield unexpected reactivity paths. The present report highlights the synthesis of rhodium methylidenes from chloroalkanes (e.g. CH2Cl2 and CHCl3) at POP-pincer frameworks (e.g. POP = 4,6-bis(di-tert- butylphosphino)dibenzo[b,d]furan) via a cascade of halide abstraction and electron transfer steps. Experimental and computational studies are reported that support the proposed mechanism, including characterization of important reaction intermediates. The overall transformation represents a route towards reactive metal alkylidenes using milder and less-reactive carbenoid precursors than what is presently used.

Keywords

alkylidene
rhodium
carbenoid

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.