Orthogonal Synthesis of Highly Porous Zr-MOFs Assembled from Simple Building Blocks for Oxygen Storage

13 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The last decade has witnessed significant advances in the scale-up synthesis of metal–organic frameworks (MOFs) using commercially available and affordable organic linkers. However, the synthesis of MOFs using elongated and/or multitopic linkers to access MOFs with large pore volume and/or various topologies can often be challenging due to multi-step organic syntheses involved for linker preparation.In this report, a orthogonal MOF synthesis strategy is developed by utilizing the coordination and covalent bonds formation in one-pot where monoacid-based ligands reacted to form ditopic ligands which then assembled into a 3-D MOF with Zr6 clusters. Chemical stability of the resulting materials was significantly enhanced through converting the imine bond into robust linkage via cycloaddition with phenylacetylene. Oxygen storage capacities of the MOFs were measured, and enhanced volumetric O2 uptake was observed for the stabilized MOF, NU-401-Q.

Keywords

Zr-MOFs
one-pot syntheses
Imine bonds
stabilization
O2 uptake

Supplementary materials

Title
Description
Actions
Title
NU-401-Q
Description
Actions
Title
NU-401
Description
Actions
Title
NU-402
Description
Actions
Title
supporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.