Probing Protein Shelf Lives from Inverse Mean First Passage Times

13 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Protein aggregation is investigated theoretically via protein turnover, misfolding, aggregation and degradation. The Mean First Passage Time (MFPT) of aggregation is evaluated within the framework of Chemical Master Equation (CME) and pseudo first order kinetics with appropriate boundary conditions. The rate constants of aggregation of different proteins are calculated from the inverse MFPT, which show an excellent match with the experimentally reported rate constants and those extracted from the ThT/ThS fluorescence data. Protein aggregation is found to be practically independent of the number of contacts and the critical number of misfolded contacts. The age of appearance of aggregation-related diseases is obtained from the survival probability and the MFPT results, which matches with those reported in the literature. The calculated survival probability is in good agreement with the only available clinical data for Parkinson’s disease.

Keywords

Protein turnover
Mean first passage time
Survival probability
aggregation
misfolding

Supplementary materials

Title
Description
Actions
Title
suppinfo-11
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.