Can Machine Learning Find Extraordinary Materials?

09 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

One of the most common criticisms of machine learning is an assumed inability for models to extrapolate, i.e. to identify extraordinary materials with properties beyond those present in the training data set. To investigate whether this is indeed the case, this work takes advantage of density functional theory calculated properties (bulk modulus, shear modulus, thermal conductivity, thermal expansion, band gap and Debye temperature) to investigate whether machine learning is truly capable of predicting materials with properties that extend beyond previously seen values. We refer to these materials as extraordinary, meaning they represent the top 1% of values in the available data set. Interestingly, we show that even when machine learning is trained on a fraction of the bottom 99% we can consistently identify 3/4 of the highest performing compositions for all considered properties with a precision that is typically above 0.5. Moreover, we investigate a few different modeling choices and demonstrate how a classification approach can identify an equivalent amount of extraordinary compounds but with significantly fewer false positives than a regression approach. Finally, we discuss cautions and potential limitations in implementing such an approach to discover new record-breaking materials.

Keywords

Machine learning
Extrapolation
Materials screening
Materials Informatics
Support vector machine
regression
chemical white space
materials discovery

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.