Refinement of Organic Crystal Structure with Multipolar Electron Scattering Factors

26 June 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A revolution in resolution is occurring now in electron microscopy arising from the development of methods for imaging single particles at cryogenic temperatures and obtaining electron diffraction data from nanocrystals of small organic molecules or macromolecules. Near- atomic or even atomic resolution of molecular structures can be achieved. The basis of these methods is the scattering of an electron beam due to the electrostatic potential of the sample. To analyze this high-quality experimental data, it is necessary to use appropriate atomic scattering factors. The independent atomic model (IAM) is commonly used although various more advanced models, already known from X-ray diffraction, can also be applied to enhance the analysis.
In this study we present a comparison of IAM and TAAM (Transferable Aspherical Atom Model), the latter with the parameters of the Hansen-Coppens multipole model transferred from the University at Buffalo Databank (UBDB). By this method, TAAM takes into account the fact that atoms in molecules are partially charged and are not spherical. We performed structure refinements on a carbamazepine crystal using electron structure factor amplitudes determined experimentally (Jones et al., 2018) or modeled with theoretical quantum-mechanical methods. The results show the possibilities and limitations of the TAAM method when applied to electron diffraction. Among others, the method clearly improves model fitting statistics, when compared to IAM, and allows for reliable refinement of atomic thermal parameters. The improvements are more pronounced with poorer resolution of diffraction data.

Keywords

electron crystallography
electron microscopy
electron diffraction
aspherical scattering factors
structure refinement
TAAM
quantum crystallography
microED
cryoEM

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.