Outsmarting Quantum Chemistry Through Transfer Learning

06 July 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Computer simulations are foundational to theoretical chemistry. Quantum-mechanical (QM) methods provide the highest accuracy for simulating molecules but have difficulty scaling to large systems. Empirical interatomic potentials (classical force fields) are scalable, but lack transferability to new systems and are hard to systematically improve. Automated, data-driven machine learning is close to achieving the best of both approaches. Here we use transfer learning to retrain a general purpose neural network potential, ANI-1x, on a dataset of gold standard QM calculations (CCSD(T)/CBS level) that is relatively small but designed to optimally span chemical space. The resulting potential, ANI-1ccx, approaches CCSD(T)/CBS accuracy on benchmarks for reaction thermochemistry, isomerization, and drug-like molecular torsions. ANI-1ccx is broadly applicable to materials science, biology and chemistry, and billions of times faster than the parent CCSD(T)/CBS calculations.

Keywords

Machine Learning
quantum chemical calculations

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.