Abstract
Models suggest BrHgONO to be the major Hg(II) species formed in the global oxidation of Hg(0), and BrHgONO undergoes rapid photolysis to produce the thermally stable radical BrHgO•. We previously used quantum chemistry to demonstrate that BrHgO• can, like OH radical, readily can abstract hydrogen atoms from sp3-hybridized carbon atoms as well as add to NO and NO2. In the present work, we reveal that BrHgO• can also add to C2H4 to form BrHgOCH2CH2•, although this addition appears to proceed with a lower rate constant than the analogous addition of •OH to C2H4. Additionally, BrHgO• can readily react with HCHO in two different ways: either by addition to the carbon or by abstraction of a hydrogen atom. The minimum energy path for the BrHgO• + HCHO reaction bifurcates, forming two pre-reactive complexes, each of which passes over a separate transition state to form a different product.