Dynamic Perturbation of the Electrical Double Layer with an Electrochemical AFM for Confined Metal Electrodeposition

11 June 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We demonstrate the directed electrochemical deposition of copper nanostructures by using an oscillating nanoelectrode operated with an atomic force microscope (AFM). Strikingly, the writing is only possible in highly dilute electrolytes and for a particular combination of AFM and electrochemical parameters. We propose a mechanism based on cyclic charging and discharging of the electrical double layer (EDL). The extended screening length and slower charge dynamics in dilute electrolytes allows the nanoelectrode to operate inside, and disturb, the EDL even for large oscillation amplitudes (~100 nm). Our unique approach can not only be used for controlled additive nano-fabrication but also provides insights into ion behavior and EDL dynamics at the solid-liquid interface.

Keywords

Direct Writing
scanning probe microscopy
electrochemical deposition technique
Electric Double Layer

Supplementary materials

Title
Description
Actions
Title
Aarts-ECAFM-SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.