Conformational Entropy as a Means to Control the Behavior of Poly(diketonenamine) Vitrimers In and Out of Equilibrium

10 June 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Here we show how to control the thermomechanical behavior of vitrimers, both in and out of equilibrium, by incorporating into the dynamic covalent network linear polymer segments varying in both molecular weight (MW = 0–12 kg mol–1) and conformational degrees of freedom. While increasing MW of linear segments predictably yields a lower storage modulus (E’) at the rubbery plateau after softening above the glass transition (Tg), due to the lower network density, we further find that both Tg and the characteristic time (t*) of stress-relaxation when deformed are independently governed by the conformational entropy of the embodied linear segments. We also find that activation energies (Ea) for vitrimer bond exchange in the solid-state are lower, by as much as 19 kJ mol−1, for networks incorporating flexible chains, and that the network’s topology freezing temperature (Tv) decreases with increasing MW of flexible linear segments, but increases with increasing MW of stiff linear segments. Therefore, the dynamics of vitrimer reconfigurability are influenced not only by the energetics of associative bond exchange for a given network density, but also foundationally by the entropy of polymer chains within the network.

Keywords

polydiketoenamines
Vitrimer
vitrimer chemistry
conformational entropy
biopolymer material

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.