Abstract
Atomistic simulations are powerful for probing molecules at bioinorganic interfaces and excellent complements to scarcely available experimental techniques. The free energy controls the adsorption behavior of molecules on nanosurfaces, and is therefore a quantity of particular importance. Advanced sampling techniques can efficiently explore the adsorption free energy landscape, but molecular simulations with classical (Newtownian) dynamics fail to capture charge transfer and polarization at the solid-liquid interface. First principle simulations do not suffer from this limitation but come with a heavy computational load. Here, we introduce an efficient protocol to explore the free energy of adsorption in the ab initio framework. This approach accurately models the complex phenomena at bio-inorganic surfaces on the nanoscale and properly samples the relevant thermodynamic properties. We present a case study of adsorption of the Lysine and Aspartate amino acids on the anatase (101) TiO2 surface with the tight binding method. The high values of the calculated adsorption free energies highlight the importance of a proper description of the electronic state for surface binding processes.