Insights into Non-Covalent Interactions with a Machine-Learned Electron Density

04 June 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chemists continuously harvest the power of non-covalent interactions to control phenomena in both the micro- and macroscopic worlds. From the quantum chemical perspective, the strategies essentially rely upon an in-depth understanding of the physical origin of these interactions, the quantification of their magnitude and their visualization in real-space.
The total electron density rho(r) represents the simplest yet most comprehensive piece of information available for fully characterizing bonding patterns and non-covalent interactions. The charge density of a molecule can be computed by solving the Schrodinger equation, but this approach becomes rapidly demanding if the electron density has to be evaluated for thousands of different molecules or for very large chemical systems, such as peptides and proteins.
Here we present a transferable and scalable machine-learning model capable of predicting the total electron density directly from the atomic coordinates. The regression model is used to access qualitative and quantitative insights beyond the underlying rho(r) in a diverse ensemble of sidechain-sidechain dimers extracted from the BioFragment database (BFDb). The transferability of the model to more complex chemical systems is demonstrated by predicting and analyzing the electron density of a collection of 8 polypeptides.

Keywords

Electron density
Noncovalent interaction
machine learning
peptide

Supplementary materials

Title
Description
Actions
Title
ML Rho NCI SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.