A Quantum Mechanical Description of Electrostatics Provides a Unified Picture of Catalytic Action Across Methyltransferases

31 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Methyl transferases (MTases) are a well-studied class of enzymes for which competing enzymatic enhancement mechanisms have been suggested, ranging from structural methyl group C-H···X hydrogen bonds (HBs) to electrostatic- and charge-transfer-driven stabilization of the transition state (TS). We identified all Class I MTases for which reasonable resolution (< 2.0 Å) crystal structures could be used to form catalytically competent ternary complexes for multi-scale (i.e., quantum-mechanical/molecular-mechanical or QM/MM) simulation of the SN2 methyl transfer reaction coordinate. The four Class I MTases studied have both distinct functions (e.g., protein repair or biosynthesis) and substrate nucleophiles (i.e., C, N, or O). While CH···X HBs stabilize all reactant complexes, no universal TS stabilization role is found for these interactions in MTases. A consistent picture is instead obtained through analysis of charge transfer and electrostatics, wherein the majority of cofactor-substrate charge separation is maintained in the TS region, and electrostatic potential is correlated with substrate nucleophilicity (i.e., intrinsic reactivity).

Keywords

methyltransferases
QM/MM
enzyme catalysis
electrostatics
charge transfer

Supplementary materials

Title
Description
Actions
Title
CoverImage
Description
Actions
Title
MTCTSI v5
Description
Actions
Title
structures
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.