Light-Driven Deracemization Enabled by Excited-State Electron Transfer

31 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A new strategy for catalytic deracemization is presented, wherein amine derivatives undergo spontaneous optical enrichment upon exposure to visible light in the presence of three distinct molecular catalysts. Initiated by an excited-state iridium chromophore, this reaction proceeds via a sequence of favorable electron, proton, and hydrogen atom transfer steps that serve to break and reform a stereogenic C–H bond. The enantioselectivity in these reactions is jointly determined by two independent stereoselective steps that occur in sequence within the catalytic cycle, giving rise to a composite selectivity that is higher than that of either step individually. These reactions represent a distinct and potentially general approach to creating out-of-equilibrium product distributions between substrate enantiomers using excited-state redox events.

Keywords

deracemization
out-of-equilibrium
electron transfer
photochemistry

Supplementary materials

Title
Description
Actions
Title
derac SI ChemRXIV
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.