Bimetallic Radical Redox-Relay Catalysis for the Isomerization of Epoxides to Allylic Alcohols

24 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Organic radicals are generally short-lived intermediates with exceptionally high reactivity. Strategically, achieving synthetically useful transformations mediated by organic radicals requires both efficient initiation and selective termination events. Here, we report a new catalytic strategy, namely bimetallic radical redox-relay, in the regio- and stereoselective rearrangement of epoxides to allylic alcohols. This approach exploits the rich redox chemistry of Ti and Co complexes and merges reductive epoxide ring opening (initiation) with hydrogen atom transfer (termination). Critically, upon effecting key bond-forming and -breaking events, Ti and Co catalysts undergo proton-transfer/electron-transfer with one another to achieve turnover, thus constituting a truly synergistic dual catalytic system.

Keywords

Radical catalysis
Allylic alcohols
Asymmetric catalysis
Epoxide ring opening
Titanium catalysis
Cobalt catalysis

Supplementary materials

Title
Description
Actions
Title
TOC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.