Automatic Retrosynthetic Pathway Planning Using Template-free Models

23 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present an attention-based Transformer model for automatic retrosynthesis route planning. Our approach starts from reactants prediction of single-step organic reactions for given products, followed by Monte Carlo tree search-based automatic retrosynthetic pathway prediction. Trained on two datasets from the United States patent literature, our models achieved a top-1 prediction accuracy of over 54.6% and 63.0% with more than 95% and 99.6% validity rate of SMILES, respectively, which is the best up to now to our knowledge. We also demonstrate the application potential of our model by successfully performing multi-step retrosynthetic route planning for four case products, i.e., antiseizure drug Rufinamide, a novel allosteric activator, an inhibitor of human acute-myeloid-leukemia cells and a complex intermediate of drug candidate. Further, by using heuristics Monte Carlo tree search, we achieved automatic retrosynthetic pathway searching and successfully reproduced published synthesis pathways. In summary, our model has achieved the state-of-the-art performance on single-step retrosynthetic prediction and provides a novel strategy for automatic retrosynthetic pathway planning.



Keywords

Retrosynthesis
MCTS

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.