Deep Learning Model for Predicting Solvation Free Energies in Generic Organic Solvents

07 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Prediction of aqueous solubilities or hydration free energies is an extensively studied area in machine learning applications on chemistry since water is the sole solvent in the living system. However, for non-aqueous solutions, few machine learning studies have been undertaken so far despite the fact that the solvation mechanism plays an important role in various chemical reactions. Here, we introduce a novel, machine-learning based quantitative structure-property prediction method which predicts solvation free energies for various organic solute and solvent systems.
A novelty of our method involves two separate solvent and solute encoder networks that can quantify structural features of given compounds via word embedding and recurrent layers, with the attention mechanism which extracts important substructures from outputs of recurrent neural networks. As a result, the predictor network calculates solvation free energy of a given mixture using features from encoders. With results obtained from extensive calculations on 2495 solute-solvent mixtures, we demonstrate that our methodology outperforms both ab initio and MD solvation model in terms of estimation error for solvation energy.

Keywords

Solvation Free Energies
machine Learning Predictions
artificial intelligence

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.